OpenAI
This will help you get started with OpenAIEmbeddings embedding
models using LangChain. For detailed
documentation on OpenAIEmbeddings
features and configuration options,
please refer to the API
reference.
Overviewβ
Integration detailsβ
Class | Package | Local | Py support | Package downloads | Package latest |
---|---|---|---|---|---|
OpenAIEmbeddings | @langchain/openai | β | β |
Setupβ
To access OpenAIEmbeddings embedding models youβll need to create an
OpenAI account, get an API key, and install the @langchain/openai
integration package.
Credentialsβ
Head to platform.openai.com to sign up to
OpenAI and generate an API key. Once youβve done this set the
OPENAI_API_KEY
environment variable:
export OPENAI_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installationβ
The LangChain OpenAIEmbeddings integration lives in the
@langchain/openai
package:
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Instantiationβ
Now we can instantiate our model object and generate chat completions:
import { OpenAIEmbeddings } from "@langchain/openai";
const embeddings = new OpenAIEmbeddings({
apiKey: "YOUR-API-KEY", // In Node.js defaults to process.env.OPENAI_API_KEY
batchSize: 512, // Default value if omitted is 512. Max is 2048
model: "text-embedding-3-large",
});
If youβre part of an organization, you can set
process.env.OPENAI_ORGANIZATION
to your OpenAI organization id, or
pass it in as organization
when initializing the model.
Indexing and Retrievalβ
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object
we initialized above. In this example, we will index and retrieve a
sample document using the demo
MemoryVectorStore
.
// Create a vector store with a sample text
import { MemoryVectorStore } from "langchain/vectorstores/memory";
const text =
"LangChain is the framework for building context-aware reasoning applications";
const vectorstore = await MemoryVectorStore.fromDocuments(
[{ pageContent: text, metadata: {} }],
embeddings
);
// Use the vector store as a retriever that returns a single document
const retriever = vectorstore.asRetriever(1);
// Retrieve the most similar text
const retrievedDocuments = await retriever.invoke("What is LangChain?");
retrievedDocuments[0].pageContent;
LangChain is the framework for building context-aware reasoning applications
Direct Usageβ
Under the hood, the vectorstore and retriever implementations are
calling embeddings.embedDocument(...)
and embeddings.embedQuery(...)
to create embeddings for the text(s) used in fromDocuments
and the
retrieverβs invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single textsβ
You can embed queries for search with embedQuery
. This generates a
vector representation specific to the query:
const singleVector = await embeddings.embedQuery(text);
console.log(singleVector.slice(0, 100));
[
-0.01927683, 0.0037708976, -0.032942563, 0.0037671267, 0.008175306,
-0.012511838, -0.009713832, 0.021403614, -0.015377721, 0.0018684798,
0.020574018, 0.022399133, -0.02322873, -0.01524951, -0.00504169,
-0.007375876, -0.03448109, 0.00015130726, 0.021388533, -0.012564631,
-0.020031009, 0.027406884, -0.039217334, 0.03036327, 0.030393435,
-0.021750538, 0.032610722, -0.021162277, -0.025898525, 0.018869571,
0.034179416, -0.013371604, 0.0037652412, -0.02146395, 0.0012641934,
-0.055688616, 0.05104287, 0.0024982197, -0.019095825, 0.0037369595,
0.00088757504, 0.025189597, -0.018779071, 0.024978427, 0.016833287,
-0.0025868358, -0.011727491, -0.0021154736, -0.017738303, 0.0013839195,
-0.0131151825, -0.05405959, 0.029729757, -0.003393808, 0.019774588,
0.028885076, 0.004355387, 0.026094612, 0.06479911, 0.038040817,
-0.03478276, -0.012594799, -0.024767255, -0.0031430433, 0.017874055,
-0.015294761, 0.005709139, 0.025355516, 0.044798266, 0.02549127,
-0.02524993, 0.00014553308, -0.019427665, -0.023545485, 0.008748483,
0.019850006, -0.028417485, -0.001860938, -0.02318348, -0.010799851,
0.04793565, -0.0048983963, 0.02193154, -0.026411368, 0.026426451,
-0.012149832, 0.035355937, -0.047814984, -0.027165547, -0.008228099,
-0.007737882, 0.023726488, -0.046487626, -0.007783133, -0.019638835,
0.01793439, -0.018024892, 0.0030336871, -0.019578502, 0.0042837397
]
Embed multiple textsβ
You can embed multiple texts for indexing with embedDocuments
. The
internals used for this method may (but do not have to) differ from
embedding queries:
const text2 =
"LangGraph is a library for building stateful, multi-actor applications with LLMs";
const vectors = await embeddings.embedDocuments([text, text2]);
console.log(vectors[0].slice(0, 100));
console.log(vectors[1].slice(0, 100));
[
-0.01927683, 0.0037708976, -0.032942563, 0.0037671267, 0.008175306,
-0.012511838, -0.009713832, 0.021403614, -0.015377721, 0.0018684798,
0.020574018, 0.022399133, -0.02322873, -0.01524951, -0.00504169,
-0.007375876, -0.03448109, 0.00015130726, 0.021388533, -0.012564631,
-0.020031009, 0.027406884, -0.039217334, 0.03036327, 0.030393435,
-0.021750538, 0.032610722, -0.021162277, -0.025898525, 0.018869571,
0.034179416, -0.013371604, 0.0037652412, -0.02146395, 0.0012641934,
-0.055688616, 0.05104287, 0.0024982197, -0.019095825, 0.0037369595,
0.00088757504, 0.025189597, -0.018779071, 0.024978427, 0.016833287,
-0.0025868358, -0.011727491, -0.0021154736, -0.017738303, 0.0013839195,
-0.0131151825, -0.05405959, 0.029729757, -0.003393808, 0.019774588,
0.028885076, 0.004355387, 0.026094612, 0.06479911, 0.038040817,
-0.03478276, -0.012594799, -0.024767255, -0.0031430433, 0.017874055,
-0.015294761, 0.005709139, 0.025355516, 0.044798266, 0.02549127,
-0.02524993, 0.00014553308, -0.019427665, -0.023545485, 0.008748483,
0.019850006, -0.028417485, -0.001860938, -0.02318348, -0.010799851,
0.04793565, -0.0048983963, 0.02193154, -0.026411368, 0.026426451,
-0.012149832, 0.035355937, -0.047814984, -0.027165547, -0.008228099,
-0.007737882, 0.023726488, -0.046487626, -0.007783133, -0.019638835,
0.01793439, -0.018024892, 0.0030336871, -0.019578502, 0.0042837397
]
[
-0.010181213, 0.023419594, -0.04215527, -0.0015320902, -0.023573855,
-0.0091644935, -0.014893179, 0.019016149, -0.023475688, 0.0010219777,
0.009255648, 0.03996757, -0.04366983, -0.01640774, -0.020194141,
0.019408813, -0.027977299, -0.022017224, 0.013539891, -0.007769135,
0.032647192, -0.015089511, -0.022900717, 0.023798235, 0.026084099,
-0.024625633, 0.035003178, -0.017978394, -0.049615882, 0.013364594,
0.031132633, 0.019142363, 0.023195215, -0.038396914, 0.005584942,
-0.031946007, 0.053682756, -0.0036356465, 0.011240003, 0.0056690844,
-0.0062791156, 0.044146635, -0.037387207, 0.01300699, 0.018946031,
0.0050415234, 0.029618073, -0.021750772, -0.000649473, 0.00026951815,
-0.014710871, -0.029814405, 0.04204308, -0.014710871, 0.0039616977,
-0.021512369, 0.054608323, 0.021484323, 0.02790718, -0.010573876,
-0.023952495, -0.035143413, -0.048802506, -0.0075798146, 0.023279356,
-0.022690361, -0.016590048, 0.0060477243, 0.014100839, 0.005476258,
-0.017221114, -0.0100059165, -0.017922299, -0.021989176, 0.01830094,
0.05516927, 0.001033372, 0.0017310516, -0.00960624, -0.037864015,
0.013063084, 0.006591143, -0.010160177, 0.0011394264, 0.04953174,
0.004806626, 0.029421741, -0.037751824, 0.003618117, 0.007162609,
0.027696826, -0.0021070621, -0.024485396, -0.0042141243, -0.02801937,
-0.019605145, 0.016281527, -0.035143413, 0.01640774, 0.042323552
]
Specifying dimensionsβ
With the text-embedding-3
class of models, you can specify the size of
the embeddings you want returned. For example by default
text-embedding-3-large
returns embeddings of dimension 3072:
import { OpenAIEmbeddings } from "@langchain/openai";
const embeddingsDefaultDimensions = new OpenAIEmbeddings({
model: "text-embedding-3-large",
});
const vectorsDefaultDimensions =
await embeddingsDefaultDimensions.embedDocuments(["some text"]);
console.log(vectorsDefaultDimensions[0].length);
3072
But by passing in dimensions: 1024
we can reduce the size of our
embeddings to 1024:
import { OpenAIEmbeddings } from "@langchain/openai";
const embeddings1024 = new OpenAIEmbeddings({
model: "text-embedding-3-large",
dimensions: 1024,
});
const vectors1024 = await embeddings1024.embedDocuments(["some text"]);
console.log(vectors1024[0].length);
1024
Custom URLsβ
You can customize the base URL the SDK sends requests to by passing a
configuration
parameter like this:
import { OpenAIEmbeddings } from "@langchain/openai";
const model = new OpenAIEmbeddings({
configuration: {
baseURL: "https://your_custom_url.com",
},
});
You can also pass other ClientOptions
parameters accepted by the
official SDK.
If you are hosting on Azure OpenAI, see the dedicated page instead.
API referenceβ
For detailed documentation of all OpenAIEmbeddings features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_openai.OpenAIEmbeddings.html